Anaesthetic Circuits—Review Study

-Dr. C. P. Shrivastava

Introduction

The modern anaesthesia machine is usually equipped with calibrated retameter and accurate vapourisers in order to supply known volume and concentration of Oxygen and inhalational anaesthetic agents. This concentration of agents may be attended or modified by type of circuit they are passed through, from the machine to the patient. Any rise in carbon dioxide (CO₂) level in the circuit results in fall of inspired oxygen concentration.

So the anaesthetic circuits should be and have been made to maintain correct concentration of different anaesthetic agents used and oxygen. But many times it is found that valves and conducting rubber tubings are arranged to anaesthetist's convenience rather than functional reasons. Whatever may be the cause of such arrangements, breathing (anaesthetic) circuits have been classified by many authors in their own way as according to Dorsch and Dorsch "A favourite pastime among anaesthesiologists has been classification of breathing system and the result has been hopelessly confused terminology".

Classifications and their descriptions

Most of the anaesthesiologists in their classification of breathing anaesthetic circuits have used the terms open, semiclosed, semiclosed and closed and yet the same terms have been defined very differently by different anaesthetists.

But then all of circuits are prepared, giving economy of anaesthetic gas and minimum rebreathing the highest priority.

Here how I would like to present some existing classifications of breathing circuits by different authors (anaesthesiologists)
A) Dripps, Vanderbilt & Edmonson in their classification of anaesthetic circuits have categorized them in five different types depending on presence or absence of

1. Reservoir bag in the breathing circuit
2. Rebreathing of exhaled gas
3. Carbon dioxide absorber
4. Directional valve in the circuits.

According to these authors, following are the types of anaesthetic circuits

1. **Insufflation** - In this system oxygen and anaesthetic gases are supplied directly to patient’s mouth. This system has no reservoir bag or absorber.

2. **Open** - In this type circuit oxygen and anaesthetic gases are supplied by an anaesthetic machine (including intermittent type) with non-rebreathing valve (which direct the exhaled gas to atmosphere). Reservoir bag may or may not be present and has no CO₂ absorber.

3. **Semieopen** - In this system exhaled gas partially escapes to atmosphere and partially enters into the inspiratory tube which may be re breathed. There is no CO₂ absorber re-breathing depends on flow of fresh gas. Reservoir bag and valve may or may not be present e.g. open drop, Magill Ayre’s ‘T’ piece.

4. **Semiclosed** - In this system CO₂ absorber is used. Reservoir bag and valve are present. Exhaled gas is partly lost into atmosphere and partly mixes up with fresh gas.

5. **Closed** - Here a CO₂ absorber is used. Exhaled gas is fully re-breathed reservoir bag and valves are used e.g. To & fro circle.

The whole thing can be charted as follows

<table>
<thead>
<tr>
<th>Types of Circuit</th>
<th>Reservoir Bag</th>
<th>Rebreathing</th>
<th>CO₂ absorber</th>
<th>Directional valve</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Insufflation</td>
<td>No</td>
<td>Least</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2. Open Demand</td>
<td>No</td>
<td>Minimal</td>
<td>No</td>
<td>Two</td>
</tr>
<tr>
<td>Non-rebreathing</td>
<td>Yes</td>
<td>Minimal</td>
<td>No</td>
<td>Two</td>
</tr>
<tr>
<td>3. Semieopen</td>
<td>No</td>
<td>Partial</td>
<td>No</td>
<td>More</td>
</tr>
<tr>
<td>Opendrop</td>
<td>No</td>
<td>Partial</td>
<td>No</td>
<td>More</td>
</tr>
<tr>
<td>T piece</td>
<td>Yes</td>
<td>Partial</td>
<td>Yes</td>
<td>Two</td>
</tr>
<tr>
<td>Magill</td>
<td>Yes</td>
<td>Partial</td>
<td>Yes</td>
<td>Two</td>
</tr>
<tr>
<td>4. Semiclosed</td>
<td>Yes</td>
<td>Complete</td>
<td>Yes</td>
<td>None</td>
</tr>
<tr>
<td>5. Closed</td>
<td>Yes</td>
<td>Complete</td>
<td>Yes</td>
<td>Two</td>
</tr>
</tbody>
</table>

-52-
1. After Phillips and Vandam’s we can take a look at J. Mayer’s “Classification of circuits” which has divided it into four varieties depending on presence or absence of reservoir bag and rebreathing. Following chart shows Mayer’s classification.

<table>
<thead>
<tr>
<th>Circuits</th>
<th>Reservoir</th>
<th>Rebreathing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Semi-open</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Semi-closed</td>
<td>Yes</td>
<td>Yes, partial</td>
</tr>
<tr>
<td>Closed</td>
<td>Yes</td>
<td>Yes, complete</td>
</tr>
</tbody>
</table>

2. V. J. Collins, in his classification has shown four types of classification. In his classification he defined:

1. **Open circuit**: As circuit where anaesthetic vapour is given to patient with the help of atmospheric air. The respiratory passage has access to atmosphere during inspiration and expiration. There is no reservoir bag and no rebreathing as well.

2. **Semi-open**: In this, patient’s respiratory system is open to atmosphere both during inspiration and expiration. The reservoir is also open to atmosphere and technically there is no rebreathing. Anaesthetic gas or vapour is carried by atmospheric air.

3. **Semi-closed**: As a circuit in which patient’s respiratory tract is closed to atmosphere during inspiration but open to atmosphere during expiration. Reservoir bag is present and it does not communicate with atmosphere.

4. **Closed**: In this system there is no escape of anaesthetic vapours or gases to atmosphere. Respiratory tract is not open to atmosphere either on inspiration or on expiration. Reservoir bag is present and there is full rebreathing. Collins’s classification is shown in brief in following chart.

<table>
<thead>
<tr>
<th>Circuits</th>
<th>Reservoir</th>
<th>Rebreathing</th>
<th>Inspiration</th>
<th>Expiration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Semi-open</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Semi-closed</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Closed</td>
<td>Yes</td>
<td>Yes full</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
D) Adriano has similarly divided breathing circuits into:

- Open Vapourisation
- Insufflation
- Semiclosed
 - < Rebreathing
 - Non-rebreathing

E) Hall, in Wright's veterinary anaesthesia has described the anaesthetic circuits as shown in following chart:

<table>
<thead>
<tr>
<th>Circuits</th>
<th>Reservoir Bag</th>
<th>Rebreathing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Semi Open Semi-Closed a. Without CO₂ absorber</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Partial</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>Partial</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>Partial</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>Complete</td>
</tr>
</tbody>
</table>

F) Mc Mullen in 1951 in Journal of American Assoc. Nurse Anaesthetist classified anaesthetic circuits as:

<table>
<thead>
<tr>
<th>Circuits</th>
<th>No rebreathing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open</td>
<td>No rebreathing</td>
</tr>
<tr>
<td>Semi-closed</td>
<td>Partial rebreathing</td>
</tr>
<tr>
<td>Closed</td>
<td>Total rebreathing</td>
</tr>
</tbody>
</table>

G) C. M. Conway's classification -
Conway also used the terms open, semiopen, semiclosed and closed in his classification of circuits. This classification is accepted most widely by anaesthesiologists for purpose of description and teaching till date.
Conway's classification allows rigid definition under any given condition though behaviour of many circuits can be altered by small change in circuit arrangement or fresh gas flow. His circuits are:

1. **Open** - Open circuit has been described as a circuit with infinite boundaries with no restriction or control over fresh gas supply. So there is no control over concentration of inspired anaesthetic gas or vapour. There is no rebreathing and inspired gas contains the administered anaesthetic vapour and atmospheric air. So the inspired concentration of anaesthetics is not amenable to simple mathematical analysis. Examples of this being: a) when volatile liquids are administered in an open drop fashion on a mask held inches away from patient's face or b) anaesthetic gases being delivered from mask or tube which are held quite away from patient's face.

![Open and Semi-open](image)

2. **Semi-open** - This is partially bounded circuit with some restriction or control over fresh gas supply. The simplest example of this circuit being gauge covered Schimmelbusch mask closely applied to patient's face (amount of rebreathing in this circuit depends on thickness of material used on mask). As air is the vapourising gas in this circuit, high concentration of Ether (this is commonest agent used) may be achieved under mask and a reduction of inspired Oxygen may also occur. The hypoxia which may thus be produced can be reduced by administration of a stream of oxygen through a nasal catheter passed beneath the mask. This besides enriching inspired oxygen will also mask and reduce rebreathing.

3. **Closed** - This is a fully bounded circuit without any provision of gas overflow. There is complete rebreathing in this type of circuit. Though this circuit had been in use since middle of nineteenth century but its safe, controlled and regular use became possible only after introduction of CO₂ absorber (i.e., in 1915 by Jacobson & in 1923 by Waters).

-55-
There are two basic types of closed circuits with CO₂ absorber in it.

i. To & fro system

ii. Circle system

To & fro system of Conway's closed circuit was introduced by Waters & there is no unidirectional valve in this. The patient breathes to & fro from a reservoir bag through a circuit containing CO₂ absorber. Fresh gas is supplied near patient's mouth. The reservoir bag is kept away from absorber by using a small hose pipe but the absorber has to be nearer to patient.

![Diagram of a to & fro system](image)

R. Bag Pipe Canister Mask

To & fro system (From Sc. of foundation of Anaesthesia 1974)

The circle system was first introduced by Sword (1926). In this circle the direction of gas flow is controlled by two unidirectional valves, so that the expired gas passes through absorber to reservoir bag and then to the patient. There are various arrangements of circle system depending on site of fresh gas flow; unidirectional valve, expiratory valve, reservoir bag and CO₂ absorber. This arrangement is of more importance when this circuit may have to be used as a semiclosed one, but in fully closed circuit with basal fresh gas flow it is not very significant.

![Diagram of a circle system](image)

R. bag CO₂ absorber Valve (unidirectional, Insp.)

Ex. Valve Vapouriser Ex. valve Mask

Valve (Unidirectional Exp)

Circle system (from Scientific Foundation of Anaesthesia- 1974)
Another important factor in closed circuit is position of vapourisers used. The main reasons for use of this circuit were economy of fresh gas, conservation of water vapour and limitation of fire hazard are out of which economy of fresh gas being the most important one.

The basic principle of closed circuit of anaesthesia is that at equilibrium (between) there is no net exchange of anaesthetic agent between the patient and ambient atmosphere. Thus after reaching a state of equilibrium anaesthesia can theoretically be maintained for indefinite period by simply providing a supply of oxygen to meet patient’s basal requirement and efficient absorption of carbon dioxide. Under this condition no additional anaesthetic agent has to be added to fresh gas supply.

But in practice even with the most insoluble anaesthetic vapour i) it takes few hours to reach a state of equilibrium between inspired and alveolar concentration ii) even after attainment of equilibrium alveolar concentration can be attended with the change of respiratory patterns and with small change in proportion of gases which may be added to the circuit iii) the uptake or excretion of any component of mixture of gases from the circuit will alter the whole thing again.

Thus though the fully closed circuit is supposed to require, Only basal oxygen flow, it is not possible to maintain, but yet this circuit needs very low gas flow and minimal volatile anaesthetic agents, hence this circuit is believed to be the most economical one.

For these reasons circle system and to & fro system are commonly used as semiclosed system rather than fully closed one and in this semiclosed system it requires fresh gas flow more than basal and minimum amount of anaesthetic agent or agents.

4. Semiclosed: M. Conway’s semiclosed circuit is of three types.
 i) Rebreathing
 ii) Semiclosed with CO₂ absorber
 iii) Non rebreathing

 i) Semiclosed rebreathing is divided by Mapelson as A, B, C, D, E etc. This has been very widely accepted.

 The Magills (or Mapelson’s A): During spontaneous ventilation rebreathing in this can be prevented by relatively smaller amount of fresh gas. According to Mapelson amount of fresh gas equal to that of alveolar ventilation should be enough to prevent rebreathing however in practice he advised a fresh gas flow equal to the minute volume of patient, but again Kain & Nun (1968) show that 71½% total minute volume is enough to prevent rebreathing.

-57-
During controlled ventilation the Mapelson A show a different pattern. In order to ventilate a patient, expiratory valve opening pressure has to be increased and the venting of gas occurs during inspiration, during expiration alveolar gas is retained in the tubes and this alveolar gas is the first component of gas delivered to patient during inspiration, when the pressure during manual or mechanical ventilation is raised high enough to open the valve a mixture of expired (Dead space + alveolar gases) and fresh gas goes out. So there is marked re-breathing. And this can be reduced only by increasing Tidal volume or by increasing fresh gas flow nearly 2.25 times the normal minute volume.

In circuit B, C, D fresh gas is supplied close to the patient’s mouth which looks quite beneficial but are not as good as Mapelson A when the patient is on spontaneous ventilation.

In ‘B’ there is a closed limb unflushed by fresh, the tube can also be or act as a part reservoir. During expiration fresh and expired gas flow into reservoir and a mixture of fresh gas and alveolar gas goes out when the valve is opened. During inspiration the patient receives fresh gas from machine and
mixture of fresh gas + alveolar gas from reservoir bag. To prevent this rebreathing fresh gas flow greater than twice the minute volume is required.

In 'C' the tube length is reduced to Zero thus the volume of reservoir is reduced and the fresh gas mixed thoroughly with expired gas. So when rebreathing occurs CO₂ build up is at slower rate than in B.

In 'D' both the fresh gas and expired gas flow back along the tubing in the bag then out through the valve during expiration. During inspiration the patient therefore receives fresh gas from the machine and alveolar and fresh mixed gas from tubing. This rebreathing can be prevented by administering fresh gas twice the minute volume of patient.

During controlled ventilation B & C behaves in same way as in spontaneous. Rebreathing is slightly reduced as fresh gas accumulates near patient-end during expiratory pause. But this less marked due to absence of rubber tubing in 'C'.

\[\text{Mepelson - C}\\ \text{Sp. V } 2-3 \text{ MV}\\ \text{Asst. V } 2-3 \times \text{ MV}\]

\[\text{Mepelson - D}\\ \text{Sp. V } 1.5-2 \text{ MV}\\ \text{Asst. V } 70\text{ml} - 100\text{ml/kg}\]

\[\text{minute vol.}\]

In D during controlled ventilation all the fresh gas input is supplied to patient there is much less rebreathing than in B & C. Fresh gas
flow requirement is also very low, i.e. 70-100 ml/kg is said to enough to maintain a PCO₂ between 40 & 36.

In order of merit the circuit are but as shown below during spontaneous and assisted ventilation.

<table>
<thead>
<tr>
<th>Spontaneous vent.</th>
<th>Assisted vent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td>B</td>
<td>E</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>

In Mapelson's E circuit, he used a valveless Ayres (Phillips Ay) in 1973 'T' piece. During expiration fresh gas and expired gas from patient flow down to expiratory limb. During expiratory pause fresh gas accumulates at patient's end of 'T' piece. During inspiration gas is drawn from fresh gas supply and also from expiratory limb.

Now if fresh gas flow is more than peak inspiratory flow rate then only all included gas will be fresh gas. So according to Mapelson fresh gas flow of three times the minute volume is required to inhibit gas from expiratory limb to be rebreathed but in practice 2-25 times is usually sufficient to prevent rebreathing.

Controlled ventilation in circuit is produced by intermittent occlusion of expiratory limb. As there is no reservoir bag and minute volume should be related to fresh gas flow and inspiratory expiratory ratio.

Modification of Mapelson's E has been done by Jackson-Ree by adding a open tailed reservoir bag to expiratory limb. The function remains unaltered provided the length of tube is more than tidal volume patient. This is sometimes called Mapelson F.

ii) Semiclosed circuit with CO₂ absorber—
Increasing fresh gas flow to a closed circuit above basal level and letting out the alveolar air from it converts a closed circuit into semiclosed circuit with absorber.
In this circuit for inspired atmosphere to be similar to fresh gas flow, it is preferable that all the alveolar air be vented out from the circuit under these condition use of soda lime will be minimal. This occurs if the overflow valve is kept, close to patient and fresh gas entry should be between inspiratory unidirectional valve and absorber, and reservoir bag between absorber and expiratory unidirectional valve.

(From Sc. Foundation of Anaesthesia 1974)

iii) Semiclosed non-rebreathing- These circuits contain some form of non-rebreathing valves close to patient. These valves can be used in any of Mapelson*ABC circuits by replacing the expiratory valve.

In ideal condition a non-rebreathing circuit will have full control over the inspired gas when it is equal to minute volume.

During spontaneous ventilation with non-rebreathing circuit serious dysfunction can occur even if there is small discrepancy between fresh gas flow and patients minute volume. If FGF is inadequate there will be depletion of inspiratory reservoir which may finally prevent inspiration similarly excess of FGF will raise pressure in inspiratory reservoir causing the unidirectional valve to gain in inspiratory position of prevent expiration.

So one has to be very careful in using these non-rebreathing or unidirectional valve. If they have to be used at all slight excess of FGF should be given with one overflow valve in inspiratory limb which will vent out excess gas and prevent the rise of pressure inspiratory reservoir.

Besides all these circuits there are a) Bain’s circuit–which is a modification of Mapelson D where fresh gas tubing runs inside the expiratory limb. These two tubes are made of two different colour, usually the outer one is white PVC and the inner one is blue. This to recognise any damage in the inner tube.
Functionally its similar to Mapelson D circuit, dysfunction can occur only if inner tube is broken or damaged. This was invented by Bain and Spoerel (1972). This light handy and lengthy enough to keep anaesthetist away from operating field and make the operating field less clumsy as there is no separate fresh gas tube.

Another is Laco's which is similar to Mapelson 'A' where expiratory tube is inside and inspiratory tube is outside. There is difficulty in assisted ventilation of patients with this circuit. Functionally its similar to Mapelson A.

These two are also known as 'Co axial circuits'.

Acknowledgement

I would like to thank Mr. Keshav Prasad Sharma for getting this paper typewritten and other secretarial works.

References

1. Introduction to anaeesthesia - Dripps RD, Eichenholt JE & Vandam LC 3rd Ed.