Mechanism Underlying the Formation of Thrombus in the Coronary Artery and Drugs Affecting this Process

Mohan P Joshi

There is now sufficient evidence to indicate that thrombus superimposed on a ruptured atherosclerotic plaque is the cause of the vast majority of ischaemic syndromes such as unstable angina, myocardial infarction, and sudden death. Discussed in this article is the mechanism by which a thrombus in the coronary artery is formed. Also outlined briefly are the mechanisms by which different drugs act as antithrombotic / thrombolytic agents.

INTRODUCTION

In 1887, Welch defined thrombus as a solid mass or plug formed within the heart, arteries, veins, or capillaries from the components of the streaming blood. Three main factors (Virchow's triad) may be responsible in the pathogenesis of thrombus - stasis, hypercoagulability, and change of the vessel wall. In arteries, thrombus predominantly consists of platelets and is called white thrombus; but thrombus in veins mainly consists of red blood cells and is generally called red thrombus.

VASOCULAR ENDOTHELIUM

The vascular endothelium is not a passive structure. It plays important role in maintaining blood flow and also in keeping platelets in inactive and non-aggregating state. Firstly, the negative charge of the endothelial wall repels platelets, which are also negatively charged. Secondly, the intact endothelial lining covers, and hides from platelets, different subendothelial substances like collagen fibrils, proteoglycan, glycosaminoglycans, thrombin, and elastin. Thirdly, endothelium elaborates different active substances.

One of the important substances elaborated by the endothelium is prostacyclin (PGI₂). PGI₂ increases cyclic AMP (cAMP) concentration by activating adenyate cyclase. Cyclic AMP is a vasodilator and inhibitor of platelet aggregation.

In response to various substances such as thrombin, 5-hydroxytryptamine (serotonin), neurotransmitters, adenosine triphosphate and adenosine diphosphate, the endothelium releases a substance known as endotelium-derived relaxing factor (EDRF). EDRF is now known to be nitric oxide (NO). When released, NO quickly leads to the formation of cyclic GMP (cGMP) by activating guanylate cyclase. Cyclic GMP then causes relaxation of the vascular smooth muscle. It seems that PGI₂ and EDRF are synergistic in inhibiting platelet aggregation and dilating blood vessels. In addition to EDF, the endothelium may secrete another vasoconstricting factor, which has been named as endothelium-derived hyperpolarizing factor (EDHF).

* MRBS, MSc, MD, associate professor in clinical pharmacology. Institute of Medicine, PO Box 1524, Mahabirpur, Kathmandu, Nepal.
Mechanism Underlying the Formation of Thrombus

The endothelium also releases two contracting factors. They have been called endothelium-derived contracting factors (EDCF). One is insensitive to indomethacin (EDCF₁), while the other is sensitive to indomethacin (EDCF₂). EDCF₁ may be endothelin and EDCF₂ may be superoxide anion.⁵

Less EDRF is produced locally when the endothelium is damaged by an atherosclerotic process. Because of the decrease in EDRF production, there is an increase in vasoconstriction and platelet aggregability in the neighbourhood of the atherosclerotic plaque; this further enhances the atherosclerotic process. EDRF production may be impaired in hypertension, too.⁵

It is interesting to note that eicosapentanoic acid (present in fish oil) stimulates EDRF production, which may be the reason why it has antithrombotic property.⁵ Eicosapentanoic acid also leads to the synthesis of prostacyclin I₂, which is anti-aggregatory.¹

PLATELETS

Platelets (thrombocytes) are intimately related in the causation of coronary artery diseases (CAD). They participate in this process by (i) contributing to atheroma formation, (ii) contributing to superimposition of thrombus on the atheromatous plaque, and (iii) releasing substances capable of causing coronary vasoconstriction.⁵

Platelets contain different pro-aggregatory substances like adenosine diphosphate (ADP), 5-hydroxytryptamine, and thromboxane A₂. Thromboxane A₂ is produced from arachidonic acid by the action of cyclo-oxygenase and thromboxane synthase.

THROMBOGENESIS IN THE CORONARY ARTERIES

An artery may be occluded by (i) spasm, (ii) haemorrhage into an atheromatous plaque, (iii) thrombosis of an atheromatous plaque, or (iv) embolization of a thrombus. Of all these causes, thrombosis is the commonest.⁴ One of the commonest sites of occlusive thrombus formation is the coronary artery. In the vast majority of cases a thrombus is superimposed on an atherosclerotic lesion.⁷ Soft or unstable plaques are more dangerous than hard plaques because the former are more liable to rupture with consequent exposure of their subendothelial surface.⁸

Platelets quickly adhere to the exposed subendothelial surface by a mechanism called platelet adhesion. This happens because platelets have on their surface different receptors which have high affinity for adhesive glycoproteins present in subendothelium. Some of these receptors belong to integrin superfamily of adhesion receptors.⁹

Following adhesion to the subendothelial surface, platelets release different pro-aggregatory substances, which cause more and more platelets to aggregate with each other. This process is called platelet aggregation.

Thromboxane A₂, generated as a result of platelet release reaction, combines with its receptor and causes release of platelet agonists such as ADP and serotonin from storage granules. These platelet agonists further enhance the process of aggregation.

The final common pathway in platelet aggregation is the exposure of GP IIb/IIIa receptors present in platelets. The activated GP IIb/IIIa receptors bind with different adhesive glycoproteins, leading to aggregation and thrombus formation.⁹ The newly formed thrombus is stabilized by fibrin network.⁹

Thrombogenesis and thrombolysis are dynamic processes.¹⁰ These events are normally balanced. But if the process of thrombogenesis becomes unchecked, occlusion can occur due to the evolution of thrombus. The thrombus may extend into the poststenotic area because at this site there is flow separation, recirculation, and turbulence in blood flow. Furthermore, because of stagnation and coagulation of blood both proximal and distal to the site of occlusion, red thrombi composed mainly of RBCs and fibrin
may be secondarily formed. 8

ANTITHROMBOTIC /
THROMBOLYTIC DRUGS

Till now there is no treatment available that can effectively prevent the disruption of the surface of atheromatous plaques in the coronary arteries. 11 It is, however, possible to hinder the process of thrombus formation and also decrease chances of platelet embolization by the use of antplatelet (antithrombotic) therapy. Thrombolytic therapy, on the other hand, can be used to lyse thrombi that have already formed.

The use of aspirin as an antplatelet agent has been widely studied. Aspirin irreversibly acetylates platelet cyclooxygenase, 12 thus inhibiting the production of cyclic endoperoxide precursor of thromboxane A2. This inhibition lasts throughout the life-span (7-10 days) of platelets because they are anucleate and cannot synthesize new enzyme. 2 Although aspirin may also inhibit endothelial cyclooxygenase, regeneration of new enzymes at this site may occur within 36 hours. 3 The dose of aspirin to act as an antithrombotic agent is much less than the doses required for its other actions. Repeated administration of aspirin has been found to have cumulative effect on platelet function. 2

Sulfinpyrazone, a uricosuric drug, inhibits certain platelet functions like release reaction and adherence to subendothelium; it also suppresses prostaglandin synthesis. But its real usefulness is not as yet known clearly. 2

Dipyridamole, a vasodilator drug, inhibits platelet phosphodiesterase and consequently increase the concentration of cAMP, which inhibits aggregation. This drug may also block adenosine uptake; adenosine stimulates platelet adenylate cyclase. But this drug has not been found to be really useful. When given alone, dipyridamole offers little or no benefit. 2 It is also not clear if there is any benefit of adding this drug to aspirin. 12

An investigational drug ticlopidine has been found to inhibit platelet aggregation by interacting with and inhibiting exposure of platelet GP IIb/IIIa receptors by an unknown mechanism. 2, 9 The drug is currently being tested.

Although thrombus in coronary artery contains mainly platelets, it is fibrin which enmeshes and stabilizes them. It has been seen that dissolution of fibrin network can help in recanalization of the artery and establishment of reflow of blood. This objective has been achieved to some extent by the intravenous use of fibrinolytic (thrombolytic) drugs - streptokinase, anisoylated plasminogen streptokinase activator complex, and recombinant tissue-type plasminogen activator. Properly used, they can reduce the size of myocardial infarction and also mortality. However, there are some problems in the use of these agents, which are (i) need to give them quickly after infarction, (ii) development of reocclusion upon cessation of therapy, and (iii) increased chances of spontaneous bleeding. 13

It seems that in myocardial infarction a combination of streptokinase and aspirin is much more effective in reducing mortality from vascular causes than either drug given alone; this has been shown by a large study known as the Second International Study of Infarct Survival (ISIS-2). 12 Heparin, an anticoagulant drug, also seems to be useful as a conjunctive therapy for persistent coronary arterial patency in patients who have evolving acute myocardial infarction. 11

NEW DRUGS

New approaches are being explored for possible usefulness in the treatment of coronary thrombosis. They are:

(i) Thromboxane synthase inhibitors.
(ii) Serotonin receptor antagonists.
(iii) Endoperoxide receptor antagonists.
(iv) Platelet glycoprotein IIb/IIIa receptor blockers. (Different possible blockers are monoclonal antibodies directed against this receptor, peptides derived from the venom of vipers, and small synthetic
peptides containing arginine-glycine
hexapeptide acid).

(c) Inhibition of thrombin. (Possible
candidates are hirudin and its derivatives,
selective tripeptide chloromethyl ketone,
and synthetic thrombin inhibitors.)

CONCLUSION

Most of the cases of ischaemic

syndromes of the heart seem to be due to
fissuring of atherosclerotic plaque in the
coronary artery with subsequent development
of thrombus over it. Several studies have
shown the usefulness of low-dose aspirin as an
antithrombotic agent. In recent years there has
also been an advance in thrombolytic therapy.
Search for newer and better antithrombotic/
thrombolytic drugs is continuing.

REFERENCES

1. Woolf N. Thrombosis. In: McGee JD,
Isaacson PG, Wright NA, eds. Oxford
textbook of pathology. Volume 1: Principles

2. Majerus PW, Bruce DJ Jr, Miletich JP,
Tollefsen DM. Antagonistic, thrombolytic,
and antiplatelet drugs. In: Gilman AG, Rall
TW, Nies AS, Taylor P, eds. Goodman and
Gilman’s the pharmacological basis of
therapeutics. 8th edition. New York, Oxford,
Beijing, Frankfurt, San Paulo, Sydney,

3. Reid JL, Rubin PC, Whiting B. Lecture notes
on clinical pharmacology. 4th edition.
Oxford: Blackwell Scientific Publications,

4. Chesterman CN. Atheroma. vessel wall and
thrombosis. In: Weatherall DM, Ledingham
JGC, Warrell DA, eds. Oxford textbook of
Melbourne, New York: Oxford University
Press, 1987; 1398-13143.

5. Braunwald E. Cellular and molecular
biology of cardiovascular disease. In:
Wilson JD, Braunwald E, Isselbacher KJ,
Petersdorf RG, Martin JB, Fauci AS, Kasten
RK, eds. Harrison’s principles of internal
medicine. 12th edition. New York: McGraw-

6. Benjamin N, Valantine H. Local control of
human peripheral vascular tone: implications for

7. Cotran RS, Kumar V, Robbins SL. Robbins
Philadelphia, London, Toronto, Montreal,
Sydney, Tokyo: W.B. Saunders Company,
1989.

8. Falk E. Coronary thrombosis. pathogenesis
and clinical manifestations. Am J Cardiol

9. Collier BS. Platelets and thrombolytic therapy.

10. Serabine A. Platelets and platelet
aggregation inhibitors. In: Antman MJ,
ed. Cardiovascular pharmacology. New

11. Forrester JS, Litvak F, Grandfest,
Initiating events of acute coronary arterial

12. Handin RI. Antagonistic, fibrinolytic, and
antiplatelet therapy. In: Wilson JD,
Braunwald E, Isselbacher KJ, Petersdorf RG,
Martin JB, Fauci AS, Kasten RK, eds.
Harrison’s principles of internal medicine.

13. Gold HK. Compulsive antithrombotic and
thrombolytic therapy for coronary artery

14. ISSS - 2 (Second International Study of Infarct
Survival) Collaborative Group. Randomised
trial of intravenous streptokinase, oral
aspirin, both, or neither among 17197 cases of
suspected acute myocardial infarction: ISSS-