Molecular Identification of Extended-Spectrum β-lactamase and Integron Genes in Klebsiella pneumonia

Authors

  • Ehsan Estabraghi Department of Microbiology, Science and Research Branch, Islamic Azad University of Science and Research of Tehran, Iran.
  • Taghi Zahraei Salehi Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
  • Kumarss Amini Department of Microbiology, School of Basic Sciences, Saveh Branch, Islamic Azad University, Saveh, Iran.
  • Mahmoud Jamshidian Department of Microbiology, Science and Research Branch, Islamic Azad University, Tehran, Iran.

DOI:

https://doi.org/10.31729/jnma.2822

Keywords:

fKlebsiella pneumonia, integrons, drug resistance.

Abstract

Introduction: Infections caused by Gram negative bacteria, producing extended-spectrum β-lactamase, including Klebsiella pneumoniae are increasing all over the world with high morbidity and mortality. The aim of the present study was determined antimicrobial profile susceptibility and the prevalence of antibiotic resistance genes by multiplex PCR.
Methods: In the present study, we obtained one-hundred isolates of K. pneumoniae from different clinical samples. The antibiotic susceptibility testing was done in thirteen antibiotic and, therefore, M-PCRs were conducted using the DNA amplification for detection of ESBLs (blaTEM, blaCTX-M, blaSHV) and int (I, II, III) genes.
Results: The results of resistance to amoxicillin/clavulanate, ciprofloxacin, amikacin, trimethoprim-sulfamethoxazole, cefotaxime, ampicillin, aztreonam, imipenem, gentamicin, ceftazidime, Cefepime, ceftriaxone and levofloxacin were obtained 37%, 37%, 93%, 84%, 52%, 87%, 59%, 8%, 24%, 67%, 52%, 43% and 26%, respectively. The frequency of the extended-spectrum β-lactamase K. pneumoniae was obtained 37%. The prevalence of resistance genes of ESBLs in the M-PCR method showed that the blaTEM, blaCTX and blaSHV were 38%, 24% and 19%, respectively, however, only 8 (8%) out of 100 isolates were found to have positive outcomes for the existence of class 1 integrons and there were no detected class 2 or class 3 integrons.
Conclusions: Our results recommend the likely co-carriage of some ESBLs genes and antibiotic resistance integrons on the same plasmids harboring the MDR genes. 
Keywords: fKlebsiella pneumonia, integrons, drug resistance. | PubMed

References

Tsay R-W, Siu L, Fung C-P, Chang F-Y. Characteristics of
bacteremia between community-acquired and nosocomial
Klebsiella pneumoniae infection: risk factor for mortality
and the impact of capsular serotypes as a herald for
community-acquired infection. Archives of internal
medicine. 2002;162(9):1021-7.
2. Hirsch EB, Tam VH. Detection and treatment options
for Klebsiella pneumoniae carbapenemases (KPCs): an
emerging cause of multidrug-resistant infection. Journal of
antimicrobial chemotherapy. 2010:dkq108.

Paterson DL, Hujer KM, Hujer AM, Yeiser B, Bonomo MD,
Rice LB, et al. Extended-spectrum β-lactamases in Klebsiella
pneumoniae bloodstream isolates from seven countries:
dominance and widespread prevalence of SHV-and
CTX-M-type β-lactamases. Antimicrobial Agents and
Chemotherapy. 2003;47(11):3554-60.
4. Machado E, Coque TM, Cantón R, Novais Â, Sousa JC,
Baquero F, et al. High diversity of extended-spectrum
β-lactamases among clinical isolates of Enterobacteriaceae
from Portugal. Journal of antimicrobial chemotherapy.
2007;60(6):1370-4.
5. Branger C, Zamfir O, Geoffroy S, Laurans G, Arlet G, Thien
HV, et al. Genetic background of Escherichia coli and
extended-spectrum beta-lactamase type. Emerg Infect Dis.
2005;11(1):54-61.
6. SharMa M, PathaK S, SrivaStava P. Prevalence and
antibiogram of Extended Spectrum β-Lactamase (ESBL)
producing Gram negative bacilli and further molecular
characterization of ESBL producing Escherichia coli and
Klebsiella spp. J Clin Diagn Res. 2013;7(10):2173-7.
7. Bush K, Jacoby GA. Updated functional classification of
β-lactamases. Antimicrobial Agents and Chemotherapy.
2010;54(3):969-76.
8. Laroche E, Pawlak B, Berthe T, Skurnik D, Petit F. Occurrence
of antibiotic resistance and class 1, 2 and 3 integrons
in Escherichia coli isolated from a densely populated
estuary (Seine, France). FEMS microbiology ecology.
2009;68(1):118-30.
9. Poirel L, Le Thomas I, Naas T, Karim A, Nordmann P.
Biochemical sequence analyses of GES-1, a novel class A
extended-spectrum β-lactamase, and the class 1 integron
In52 from Klebsiella pneumoniae. Antimicrobial Agents and
Chemotherapy. 2000;44(3):622-32.
10. Correia M, Boavida F, Grosso F, Salgado M, Lito L, Cristino
JM, et al. Molecular characterization of a new class 3 integron
in Klebsiella pneumoniae. Antimicrobial Agents and
Chemotherapy. 2003;47(9):2838-43.
11. Ashayeri-Panah M, Feizabadi MM, Eftekhar F. Correlation
of Multi-drug Resistance, Integron and bla ESBL Gene
Carriage With Genetic Fingerprints of Extended-Spectrum
β-Lactamase Producing Klebsiella pneumoniae. Jundishapur
Journal of Microbiology. 2014;7(2).
12. Endimiani A, Hujer AM, Hujer KM, Gatta JA, Schriver AC,
Jacobs MR, et al. Evaluation of a commercial microarray
system for detection of SHV-, TEM-, CTX-M-, and KPC-type
β-lactamase genes in Gram-negative isolates. Journal of
clinical microbiology. 2010;48(7):2618-22.
13. Tumbarello M, Spanu T, Sanguinetti M, Citton R, Montuori
E, Leone F, et al. Bloodstream infections caused by
extended-spectrum-β-lactamase-producing Klebsiella
pneumoniae: risk factors, molecular epidemiology, and
clinical outcome. Antimicrobial Agents and Chemotherapy.
2006;50(2):498-504.
14. Odumosu BT, Adeniyi BA, Chandra R. Analysis of integrons
and associated gene cassettes in clinical isolates of multidrug
resistant Pseudomonas aeruginosa from Southwest
Nigeria. Annals of clinical microbiology and antimicrobials.
2013;12(1):1.
15. Feizabadi MM, Delfani S, Raji N, Majnooni A, Aligholi M,
Shahcheraghi F, et al. Distribution of bla TEM, bla SHV,
bla CTX-M genes among clinical isolates of Klebsiella
pneumoniae at Labbafinejad Hospital, Tehran, Iran.
Microbial drug resistance. 2010;16(1):49-53.
16. Nasehi L, Shahcheraghi F, Nikbin VS, Nematzadeh S. PER,
CTX-M, TEM and SHV Beta-lactamases in clinical isolates of
Klebsiella pneumoniae isolated from Tehran, Iran. Iranian
Journal of Basic Medical Sciences. 2010;13(3):111-8.
17. Knothe H, Shah PDP, Krcmery V, Antal M, Mitsuhashi S.
Transferable resistance to cefotaxime, cefoxitin, cefamandole
and cefuroxime in clinical isolates of Klebsiella pneumoniae
and Serratia marcescens. Infection. 1983;11(6):315-7.
18. Derakhshan S, Peerayeh SN, Fallah F, Bakhshi B, Rahbar
M, Ashrafi A. Detection of class 1, 2, and 3 integrons
among Klebsiella pneumoniae isolated from children in
Tehran hospitals. Archives of Pediatric Infectious Diseases.
2014;2(1):164-8.
19. Hansotia JB, Agarwal V, Pathak A, Saoji A. Extended
spectrum beta-lactamase mediated resistance to third
generation cephalosporins in Klebsiella pneumoniae
in Nagpur, central India. The Indian journal of medical
research. 1997;105:158-61.
20. Manchanda V, Singh N, Goyal R, Kumar A, Thukral S.
Phenotypic characteristics of clinical isolates of Klebsiella
pneumoniae & evaluation of available phenotypic techniques
for detection of extended spectrum beta-lactamases. Indian
Journal of Medical Research. 2005;122(4):330.
21. Perilli M, Dell'Amico E, Segatore B, de Massis MR,
Bianchi C, Luzzaro F, et al. Molecular characterization of
extended-spectrum β-lactamases produced by nosocomial
isolates of Enterobacteriaceae from an Italian nationwide
survey. Journal of clinical microbiology. 2002;40(2):611-4.
22. Ranjbar R, Giammanco GM, Farshad S, Owlia P, Aleo A,
Mammina C. Serotypes, antibiotic resistance, and class 1
integrons in Salmonella isolates from pediatric cases of
enteritis in Tehran, Iran. Foodborne pathogens and disease.
2011;8(4):547-53.
23. Amiri A, Firoozeh F, Moniri R, Zibaei M. Prevalence of
CTX-M-Type and PER Extended-Spectrum β-Lactamases
Among Klebsiella spp. Isolated From Clinical Specimens in
the Teaching Hospital of Kashan, Iran. Iranian Red Crescent
Medical Journal. 2016;18(3).
24. Mansury D, Motamedifar M, Sarvari J, Shirazi B, Khaledi
A. Antibiotic susceptibility pattern and identification of
extended spectrum β-lactamases (ESBLs) in clinical isolates
of Klebsiella pneumoniae from Shiraz, Iran. Iranian journal
of microbiology. 2016;8(1):55.
25. Ahmad S, Al-Juaid NF, Alenzi FQ, Mattar EH, Bakheet OE-S.
Prevalence, Antibiotic Susceptibility Pattern and Production
of Extended-Spectrum ββ-Lactamases Amongst Clinical
Isolates of Klebsiella pneumoniae at Armed Forces Hospital
in Saudi Arabia. Journal of the College of Physicians and
Surgeons Pakistan. 2009;19(4):264-5.
26. Edelstein M, Pimkin M, Palagin I, Edelstein I,
Stratchounski L. Prevalence and molecular epidemiology
of CTX-M extended-spectrum β-lactamase-producing
Escherichia coli and Klebsiella pneumoniae in Russian
hospitals. Antimicrobial Agents and Chemotherapy.

2003;47(12):3724-32.
27. Paterson DL. Resistance in gram-negative bacteria:
Enterobacteriaceae. The American journal of medicine.
2006;119(6):S20-S8.
28. Ullah F, Malik SA, Ahmed J. Antimicrobial susceptibility
pattern and ESBL prevalence in Klebsiella pneumoniae
from urinary tract infections in the North-West of Pakistan.
African Journal of Microbiology Research. 2009;3(11):676-80.
29. Jalalpoor S. Antibiotic Resistant Pattern in ESBLs Producer
Klebsiella Pneumoniae Strains Isolated of Hospitalized and
Out Patients Acquired Urinary Tract Infection. Journal of
Isfahan Medical School. 2011;29(142).
30. Shukla I, Tiwari R, Agrawal M. Prevalence of extended
spectrum-lactamase producing Klebsiella pneumoniae in a
tertiary care hospital. Indian journal of medical microbiology.
2004;22(2):87.
31. Sarojamma V, Ramakrishna V. Prevalence of ESBL-producing
Klebsiella pneumoniae isolates in tertiary care hospital. ISRN
microbiology. 2011;2011.
32. Saurina G, Quale JM, Manikal VM, Oydna E, Landman D.
Antimicrobial resistance in Enterobacteriaceae in Brooklyn,
NY: epidemiology and relation to antibiotic usage patterns.
Journal of antimicrobial chemotherapy. 2000;45(6):895-8.
33. Mathai D, Lewis MT, Kugler KC, Pfaller MA, Jones
RN, Hospital CHM, et al. Antibacterial activity of 41
antimicrobials tested against over 2773 bacterial isolates
from hospitalized patients with pneumonia: I—results from
the SENTRY Antimicrobial Surveillance Program (North
America, 1998). Diagnostic microbiology and infectious
disease. 2001;39(2):105-16.
34. Winokur P, Canton R, Casellas J-M, Legakis N. Variations in
the prevalence of strains expressing an extended-spectrum
β-lactamase phenotype and characterization of isolates
from Europe, the Americas, and the Western Pacific region.
Clinical infectious diseases. 2001;32(Supplement 2):S94-S103.
35. Cordero L, Rau R, Taylor D, Ayers LW. Enteric gram-negative
bacilli bloodstream infections: 17 years' experience in a
neonatal intensive care unit. American journal of infection
control. 2004;32(4):189-95.
36. Romero EDV, Padilla TP, Hernández AH, Grande RP,
Vázquez MF, García IG, et al. Prevalence of clinical isolates
of Escherichia coli and Klebsiella spp. producing multiple
extended-spectrum β-lactamases. Diagnostic microbiology
and infectious disease. 2007;59(4):433-7.
37. Kuo K, Shen Y, Hwang K. Clinical implications and risk
factors of extended-spectrum beta-lactamase-producing
Klebsiella pneumoniae infection in children: a case-control
retrospective study in a medical center in southern Taiwan.
Journal of Microbiology, Immunology and Infection.
2007;40(3):248-54.
38. Hosoglu S, Gundes S, Kolayli F, Karadenizli A, Demirdag
K, Gunaydin M, et al. Extended-spectrum beta-lactamases
in ceftazidime-resistant Escherichia coli and Klebsiella
pneumoniae isolates in Turkish hospitals. Indian journal of
medical microbiology. 2007;25(4):346.
39. Messai Y, Iabadene H, Benhassine T, Alouache S, Tazir
M, Gautier V, et al. Prevalence and characterization of
extended-spectrum β-lactamases in Klebsiella pneumoniae
in Algiers hospitals (Algeria). Pathologie Biologie.
2008;56(5):319-25.
40. Xiong Z, Zhu D, Zhang Y, Wang F. [Extended-spectrum
beta-lactamase in Klebsiella pneumoniae and Escherichia
coli isolates]. Zhonghua Yi Xue Za Zhi. 2002;82(21):1476-9.
41. Bora A, Hazarika NK, Shukla SK, Prasad KN, Sarma JB,
Ahmed G. Prevalence of blaTEM, blaSHV and blaCTX-M
genes in clinical isolates of Escherichia coli and Klebsiella
pneumoniae from Northeast India. Indian journal of
Pathology and Microbiology. 2014;57(2):249.
42. MONSTEIN HJ, Östholm‐Balkhed Å, Nilsson M, Nilsson M,
Dornbusch K, Nilsson L. Multiplex PCR amplification assay
for the detection of blaSHV, blaTEM and blaCTX‐M genes in
Enterobacteriaceae. Apmis. 2007;115(12):1400-8.
43. Hassan H, Abdalhamid B. Molecular characterization of
extended-spectrum beta-lactamase producing Enterobacteriaceae
in a Saudi Arabian tertiary hospital. The Journal of Infection in
Developing Countries. 2014;8(03):282-8.
44. Sonnevend A, Al Dhaheri K, Mag T, Herpay M, Kolodziejek
J, Nowotny N, et al. CTX‐M‐15‐producing multidrug‐resistant
enteroaggregative Escherichia coli in the United Arab Emirates.
Clinical microbiology and infection. 2006;12(6):582-5.
45. Ensor V, Jamal W, Rotimi V, Evans J, Hawkey P. Predominance of
CTX-M-15 extended spectrum β-lactamases in diverse Escherichia
coli and Klebsiella pneumoniae from hospital and community
patients in Kuwait. International journal of antimicrobial agents.
2009;33(5):487-9.
46. Al-Agamy MHM, Ashour MSE-D, Wiegand I. First description
of CTX-M β-lactamase-producing clinical Escherichia coli
isolates from Egypt. International journal of antimicrobial agents.
2006;27(6):545-8.
47. Lima AMS, Melo MESd, Alves LC, Brayner FA, Lopes ACS.
Investigation of class 1 integrons in Klebsiella pneumoniae clinical
and microbiota isolates belonging to different phylogenetic groups
in Recife, State of Pernambuco. Revista da Sociedade Brasileira de
Medicina Tropical. 2014;47(2):165-9.
48. Arakawa Y, Murakami M, Suzuki K, Ito H, Wacharotayankun
R, Ohsuka S, et al. A novel integron-like element carrying the
metallo-beta-lactamase gene blaIMP. Antimicrobial Agents and
Chemotherapy. 1995;39(7):1612-5.
49. Collis CM, Kim M-J, Partridge SR, Stokes H, Hall RM.
Characterization of the class 3 integron and the site-specific
recombination system it determines. Journal of bacteriology.
2002;184(11):3017-26.
50. Boavida F, Correia M, Duarte A, Grosso F, Salgado M, Lito L,
et al. Molecular characterization of a new class 3 integron in
Klebsiella pneumoniae. 2015.
51. Mobarak-Qamsari M, Ashayeri-Panah M, Eftekhar F,
Feizabadi MM. Integron mediated multidrug resistance in
extended spectrum beta-lactamase producing clinical isolates
of Klebsiella pneumoni

Downloads

Published

2016-06-30

How to Cite

Estabraghi, E., Salehi, T. Z., Amini, K., & Jamshidian, M. (2016). Molecular Identification of Extended-Spectrum β-lactamase and Integron Genes in Klebsiella pneumonia. Journal of Nepal Medical Association, 54(202), 72–78. https://doi.org/10.31729/jnma.2822

Issue

Section

Original Article